Recent Advances in the Treatment of Hematologic Malignancies

Learning Objectives

Upon completion, participants should be able to:

• Describe recent clinical data supporting the use of novel agents that target FLT3 for the treatment of AML

• Identify aspects of current and emerging CAR T-cell therapies, including targets, activity, and toxicity
AML: Basic Facts

- Estimated new cases annually = 19,520a
- Most patients diagnosed after age 60 yearsa
- Heterogeneous based on disease- and patient-related featuresb
- Therapy is adapted accordinglyc
- 5-year OS = 27\%a
- Outcomes have improved in younger patients but remain suboptimal
- Outcomes have not improved as much for older patients; 5-year OS for AML patients older than 65 years = 5\%a

The Molecular Heterogeneity of AML

Patient Clusters

- FLT3 mutations in AML
 - Three types of FLT3 mutation:
 - ITD
 - 20%-30%
 - Disrupts the auto-inhibitory function of the JM region
 - The receptor is still dependent on the presence of FLT3 ligand for complete activation
 - TKD point mutation
 - 5%-10%
 - Activates FLT3 kinase directly
 - JM domain point mutation (1%)

Characteristics of FLT3 Mutation–Positive AML

Higher incidence of NPM1 and DNMT3A mutations

Karyotype characteristics

<table>
<thead>
<tr>
<th></th>
<th>ITD neg/TKD wt (%)</th>
<th>ITD pos/TKD wt (%)</th>
<th>TKD mut/TKD wt (%)</th>
<th>ITD pos + TKD mut/TKD wt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>721 (73.6)</td>
<td>183 (18.7)</td>
<td>58 (5.9)</td>
<td>17 (1.7)</td>
</tr>
<tr>
<td>Karyotype not available</td>
<td>59 (8.2)</td>
<td>22 (12.0)</td>
<td>2 (3.4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Normal (XX,XY)</td>
<td>282 (59.1)</td>
<td>119 (65.5)</td>
<td>35 (80.3)</td>
<td>15 (61.8)</td>
</tr>
<tr>
<td>Aberrant</td>
<td>380 (52.7)</td>
<td>42 (33.3)</td>
<td>21 (34.3)</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Individual aberrations (6;21)</td>
<td>38 (5.3)</td>
<td>2 (1.3)</td>
<td>1 (1.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>t(15;17)</td>
<td>16 (5.6)</td>
<td>13 (7.1)</td>
<td>4 (8.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>inv(16)(16;16)</td>
<td>38 (5.0)</td>
<td>1 (0.6)</td>
<td>5 (8.6)</td>
<td>1 (4.6)</td>
</tr>
<tr>
<td>t(9;22)</td>
<td>5 (0.1)</td>
<td>9 (4.9)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>t(3;3), inv(3q)</td>
<td>10 (1.4)</td>
<td>1 (0.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>+8</td>
<td>59 (8.6)</td>
<td>6 (1.2)</td>
<td>9 (1.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>+8/11/13/9;22</td>
<td>54 (9.9)</td>
<td>9 (0.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>t(11;19)/22</td>
<td>26 (3.6)</td>
<td>13 (7.1)</td>
<td>4 (8.9)</td>
<td>1 (4.6)</td>
</tr>
<tr>
<td>-5/5q</td>
<td>70 (10.4)</td>
<td>2 (1.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>-7/7q</td>
<td>86 (11.9)</td>
<td>8 (0.0)</td>
<td>5 (8.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other monosomies</td>
<td>94 (13.3)</td>
<td>3 (1.6)</td>
<td>1 (1.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Multiple aberrations</td>
<td>132 (18.3)</td>
<td>13 (1.6)</td>
<td>5 (8.6)</td>
<td>1 (4.8)</td>
</tr>
</tbody>
</table>

Effect of FLT3-ITD Mutation on Outcome (UK NCRI AML 10 and AML 12)

283/1,135 (25%) non-APL AML are FLT3-ITD pos

FLT3-ITD pos: CR 86%
FLT3-ITD neg: CR 85%

Outcome of FLT3-ITD–Positive AML Following Allogeneic HSCT

The prognosis for patients with FLT3-ITD–positive AML remains poor following allogeneic HSCT due to higher risk of relapse.

![Graph showing estimated event rate at 3 years for relapse risk, NRM, DFS, and OS for FLT3-ITD+ and FLT3-ITD- patients.](image)

P < .001, P < .05, P = .065, P = .334

Selectivity of FLT3 Inhibitors

<table>
<thead>
<tr>
<th>FLT3 Inhibitor</th>
<th>Kd (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lestaurtinibb</td>
<td>NA</td>
</tr>
<tr>
<td>Midostaurin</td>
<td></td>
</tr>
<tr>
<td>Sorafenibb</td>
<td></td>
</tr>
<tr>
<td>Tandutinibb</td>
<td></td>
</tr>
<tr>
<td>Quizartinibb</td>
<td></td>
</tr>
<tr>
<td>Crenolanibb</td>
<td></td>
</tr>
<tr>
<td>Gilteritinibb</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lestaurtinib</td>
<td>"Investigational."</td>
</tr>
<tr>
<td>Midostaurin</td>
<td>"Off-label use."</td>
</tr>
</tbody>
</table>

Lestaurtinib in First-Line Chemotherapy for FLT3-Mutated AML

AEs included nausea, emesis, constipation, diarrhea, and elevated alkaline phosphatase.

AML 15 and 17

<table>
<thead>
<tr>
<th></th>
<th>Lestaurtinib</th>
<th>Standard</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLT3-ITD alone, n (%)</td>
<td>220 (73)</td>
<td>150 (75)</td>
<td></td>
</tr>
<tr>
<td>CR/CRI, %</td>
<td>92</td>
<td>94</td>
<td>.4</td>
</tr>
<tr>
<td>Survival at 5 y</td>
<td>51</td>
<td>56</td>
<td>.4</td>
</tr>
</tbody>
</table>

AML 17

<table>
<thead>
<tr>
<th></th>
<th>Lestaurtinib</th>
<th>Standard</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-y OS: No azole</td>
<td>60</td>
<td>55</td>
<td>.03</td>
</tr>
<tr>
<td>5-y OS: Azole</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>By FLT3 inhibition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 83)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 85%</td>
<td>60</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>≤ 85%</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RATIFY (CALGB 10603): Chemotherapy + Midostaurin or Placebo in Newly Diagnosed Patients < 60 Years With FLT3-Mutated AML

Collaboration with 13 international cooperative groups; 225 sites from 17 countries
- Alliance, SWOG, ECOG, NCIC, NCCTG, GIMEMA, EORTC, AMLSG, SAL, OSHO, PETHEMA, CETLAM, ALSG
- 9 academic FLT3 screening laboratories worldwide

RATIFY (CALGB 10603): OS

Median OS

OS Subgroup Analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. Patients</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value (one-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>717</td>
<td>0.78 (0.63-0.96)</td>
<td>.009</td>
</tr>
<tr>
<td>ITD (high)</td>
<td>214</td>
<td>0.80 (0.57-1.12)</td>
<td>.19 (two-sided)</td>
</tr>
<tr>
<td>ITD (low)</td>
<td>341</td>
<td>0.81 (0.60-1.11)</td>
<td>.19 (two-sided)</td>
</tr>
<tr>
<td>TKD</td>
<td>162</td>
<td>0.85 (0.59-1.18)</td>
<td>.10 (two-sided)</td>
</tr>
</tbody>
</table>

Probability of Survival, %

Gilteritinib in FLT3-Mutated R/R AML Phase 1/2 Study (CHRYSALIS)

- ≥ 18 years with FLT3-ITD R/R AML, ≥ 10 patients/dose level (N = 252 total; 194 FLT3-ITD+)
- Induction failure or relapsed AML
- 7 dose escalation (n = 23) or expansion (n = 229) cohorts
- Primary endpoints: safety, tolerability, PK
- Doses of 80 mg/day or higher led to 90% phosphorylation inhibition by day 8
Gilteritinib in FLT3-Mutated R/R AML: Clinical Response by Dose

- **Proportion of Patients Achieving Response, %**
 - **20 mg (n = 14)**
 - **40 mg (n = 8)**
 - **80 mg (n = 12)**
 - **120 mg (n = 56)**
 - **200 mg (n = 89)**
 - **300 mg (n = 10)**
 - **450 mg (n = 2)**

Common AEs included diarrhea, fatigue, and abnormal liver enzyme tests.

Gilteritinib in FLT3-Mutated R/R AML: OS

- **OS, %**
 - ≤ 40 mg/day
 - ≥ 80 mg/day

Common AEs included diarrhea, fatigue, and abnormal liver enzyme tests.

NDA filed 2018.

Quizartinib in FLT3-ITD–Positive R/R AML: Randomized Phase 2 Study

- FLT3-ITD–positive R/R AML after one second-line salvage or HSCT
- N = 76
- Prior FLT3 inhibitor allowed
- Primary objective: CR rate
- Secondary objectives: OS, duration of CRc, rate of bridging to HSCT, safety

![Diagram of FLT3-ITD+ R/R AML to second-line salvage chemotherapy or relapsed after HSCT (N = 76)](quizartinib_diagram)

Quizzartinib 30 mg/day
Quizzartinib 60 mg/day

Quizartinib in FLT3-ITD–Positive R/R AML: Efficacy

<table>
<thead>
<tr>
<th></th>
<th>30-mg arm (n = 38)</th>
<th>60-mg arm (n = 38)</th>
<th>Total (N = 76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, CRc, and PR, %</td>
<td>60.5</td>
<td>71.1</td>
<td>65.8</td>
</tr>
<tr>
<td>CRc, %</td>
<td>47.4</td>
<td>47.4</td>
<td>47.4</td>
</tr>
<tr>
<td>Median duration CRc, wk</td>
<td>4.2</td>
<td>9.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Bridge to HSCT, %</td>
<td>32</td>
<td>42</td>
<td>37</td>
</tr>
<tr>
<td>Median OS, wk</td>
<td>20.9</td>
<td>27.3</td>
<td>22.6</td>
</tr>
</tbody>
</table>

AEs included febrile neutropenia, anemia, thrombocytopenia, neutropenia, pneumonia, increased bilirubin, and pyrexia.
Quizartinib significantly prolongs overall survival in patients with FLT3-ITD–mutated relapsed/refractory AML in the phase 3, randomized, controlled QuANTUM-R trial

Presented at the 23rd Congress of the European Hematology Association; June 16, 2018; Stockholm, Sweden. Abstract LB2600.

Quizartinib (AC220): A Highly Potent and Selective FLT3 Inhibitor

Quizartinib properties:
- Oral, highly potent, selective
- Nanomolar affinity (1.6 ± 0.7 nM) against FLT3 and complete suppression of FLT3 phosphorylation in ex vivo PIA assays
- Highly selective for FLT3 when screened against 402 human kinases (other kinases with Kd within 10-fold that of FLT3 were closely related RTKs [eg, KIT])

First-generation multikinase inhibitors
- Lestaurtinib
- Midostaurin
- Sorafenib

Second-generation FLT3 inhibitor
- Quizartinib

References:
QuANTUM-R Study Design

- Primary endpoint: OS (ITT population)
- Secondary endpoint: event-free survival (ITT population)
- Select exploratory endpoints: CRc rate, duration of CRc, and transplant rate
- Enrollment dates: May 2014 (first patient) to September 2017 (last patient); data cutoff: February 2018

- FLT3-ITD AML (N = 367)
 - Age ≥ 18 years
 - Refractory AML or relapse within 6 months of first remission (± HSCT)
 - ≥ 1 cycle of standard-dose anthracycline- or mitoxantrone-containing induction therapy
 - ≥ 3% FLT3-ITD allelic ratio

- Quizartinib (n = 245)
 - 30 mg × 15 days → 60 mg if QTcF ≤ 450 ms on day 16

- Salvage chemotherapy (n = 122)
 - LoDAC (n = 29)
 - MEC (n = 40) or FLAG-IDA (n = 53)

- HSCT

- Quizartinib continuation

- Long-term follow-up

Optional treatments

QuANTUM-R CONSORT Diagram

- Screened (N = 563)
 - Randomized 2:1 (N = 367)

Quizartinib (n = 245)
 - Treated (n = 241)
 - Not treated (n = 4)

Ongoing on initial treatment (n = 6)
Completed treatment (N/A)

Primary reason for treatment discontinuation:
 - HSCT (n = 78)
 - Relapse (n = 60)
 - Lack of response/PD (n = 47)
 - AEs (n = 24)
 - Death (n = 17)
 - Protocol violation (n = 1)
 - Withdrew consent (n = 3)
 - Other (n = 4)

Received allogeneic HSCT (n = 78)

Salvage chemotherapy (n = 122)
 - Treated (n = 94)
 - Not treated (n = 28)

Ongoing on initial treatment (n = 0)
Completed treatment (n = 24)

Primary reason for treatment discontinuation:
 - HSCT (n = 3)
 - Relapse (n = 3)
 - Lack of response/PD (n = 49)
 - AEs (n = 1)
 - Death (n = 6)
 - Protocol violation (n = 2)
 - Withdrew consent (n = 2)
 - Lost to follow-up (n = 1)
 - Other (n = 3)

Received allogeneic HSCT (n = 14)
QuANTUM-R Primary Endpoint:
OS by Kaplan-Meier Method

- **Median OS:**
 - Quizartinib (n = 245): 6.2 months (95% CI, 5.3-7.2 months)
 - Salvage chemotherapy (n = 122): 4.7 months (95% CI, 4.0-5.5 months)

- **Median follow-up:** 23.5 months

- **HR, 0.76 (95% CI, 0.58-0.98)**
 - *P* = .0177 (1-sided, stratified log-rank)

QuANTUM-R: Best Response

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Quizartinib n = 245</th>
<th>Salvage chemotherapy n = 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best response</td>
<td>Percentage (95% CI)</td>
<td></td>
</tr>
<tr>
<td>CRc*</td>
<td>48 (42-55)</td>
<td>27 (19-36)</td>
</tr>
<tr>
<td>CR</td>
<td>4 (2-7)</td>
<td>1 (0-5)</td>
</tr>
<tr>
<td>CRp</td>
<td>4 (2-7)</td>
<td>0 (0-3)</td>
</tr>
<tr>
<td>CRi</td>
<td>40 (34-47)</td>
<td>26 (19-35)</td>
</tr>
<tr>
<td>PR</td>
<td>21 (16-27)</td>
<td>3 (1-8)</td>
</tr>
<tr>
<td>ORR (CRc + PR)</td>
<td>69 (63-75)</td>
<td>30 (22-39)</td>
</tr>
<tr>
<td>No response</td>
<td>25 (20-31)</td>
<td>37 (28-46)</td>
</tr>
<tr>
<td>Nonevaluable</td>
<td>5 (3-9)</td>
<td>33 (25-42)</td>
</tr>
</tbody>
</table>

*Nominal *P* = .001 for between-group comparison of CRc.

QuANTUM-R: Duration of CRc and Transplant Rate

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Quizartinib n = 245</th>
<th>Salvage Chemotherapy n = 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of CRc (95% CI), weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.1 (10.4-27.1)</td>
<td>5.0 (3.3-12.6)</td>
</tr>
<tr>
<td>Transplant, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transplant rate*</td>
<td>32</td>
<td>12</td>
</tr>
</tbody>
</table>

*Nominal P < .0001 for between-group comparison of transplant rate.

QuANTUM-R: Conclusions

- Single-agent quizartinib significantly prolonged OS of patients with FLT3-ITD–mutated R/R AML compared with salvage chemotherapy
 - OS: HR, 0.76 (95% CI, 0.58-0.98; P = .0177)
- Single-agent quizartinib was well tolerated
 - Grade ≥ 3 QTcF prolongation was uncommon
 - Investigator choice and quizartinib associated with similar rates of TEAE
- QuANTUM-R: first phase 3 trial to demonstrate that an FLT3 inhibitor improved OS compared with standard chemotherapy in patients with FLT3-ITD–mutated R/R AML
- QuANTUM-First: ongoing phase 3 study of standard chemotherapy plus placebo versus quizartinib in patients with newly diagnosed FLT3-ITD–mutated AML

Targeting FLT3 in AML: Closing Thoughts

1. Single-agent inhibitors of FLT3 are active in AML, but response rates are low despite the presence of the biomarker and inhibition of the target in all subjects
 - Predictors of response are needed
2. Combination of a kinase inhibitor with chemotherapy improves the survival of patients with FLT3-mutated AML
 - OS benefit with midostaurin is less than impressive
 - Biological basis of survival benefit is not certain (ie, inhibition of FLT3 or other kinases)
 - Will more specific inhibitors further improve outcome with chemotherapy?
3. FLT3 is a late event in leukemogenesis and is likely present only in a subclone
4. Combination of FLT3 inhibitors with agents that target cellular apoptosis (eg, BCL2 inhibitors, MDM2 inhibitors) or target the leukemic stem cell (eg, Hedgehog inhibitors, anti-CD123 antibody drug conjugates) may further improve efficacy of this class of drugs

CAR T-Cell Therapy for R/R DLBCL

Matthew McKinney, MD
Refractoriness and Relapses: The Fundamental Issue in DLBCL

- 15% to 25% are refractory to any chemotherapy
- 5% partial response patients
- 20% to 30% relapses
- 50% to 60% are already cured with previous chemotherapy (RCHOP)

We need randomized studies on these select groups of patients.
We will never improve those cured patients.

“Traditional” Salvage Chemotherapy in DLBCL

- Relapse < 12 Months (Post-CHOP)
 - Prior rituximab: No (n = 41)
 - Censored prior rituximab: No
 - Prior rituximab: Yes (n = 187)
 - Censored prior rituximab: Yes

- Relapse > 12 Months
 - Prior rituximab: No (n = 106)
 - Censored prior rituximab: No
 - Prior rituximab: Yes (n = 54)
 - Censored prior rituximab: Yes

P = .0010
P = .1124
SCHOLAR-1 Dataset

<table>
<thead>
<tr>
<th>MDACC (n = 165)</th>
<th>I/MC (n = 82)</th>
<th>LY-12 (n = 219)</th>
<th>CORAL (n = 170)</th>
<th>Pooled (N = 636)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients evaluated for survival, n</td>
<td>165</td>
<td>72</td>
<td>196</td>
<td>170</td>
</tr>
<tr>
<td>Survival from commencement of salvage therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>89</td>
<td>92</td>
<td>80</td>
<td>84</td>
</tr>
<tr>
<td>Median (95%, CI), mo</td>
<td>6.6</td>
<td>5.0</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>1-y survival rate</td>
<td>26</td>
<td>18</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>2-y survival rate</td>
<td>17</td>
<td>10</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Primary refractory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>--</td>
<td>90</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>Median (95%, CI), mo</td>
<td>--</td>
<td>6.1</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>1-y survival rate</td>
<td>--</td>
<td>26</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>2-y survival rate</td>
<td>--</td>
<td>21</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>Refractory to second-line therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>88</td>
<td>92</td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>Median (95%, CI), mo</td>
<td>6.6</td>
<td>4.7</td>
<td>6.3</td>
<td>6.1</td>
</tr>
<tr>
<td>1-y survival rate</td>
<td>29</td>
<td>9</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>2-y survival rate</td>
<td>19</td>
<td>6</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>Relapsed ≤ 12-mo post-ASCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>94</td>
<td>94</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>Median (95%, CI), mo</td>
<td>5.9</td>
<td>4.2</td>
<td>7.0</td>
<td>6.3</td>
</tr>
<tr>
<td>1-y survival rate</td>
<td>19</td>
<td>25</td>
<td>38</td>
<td>34</td>
</tr>
<tr>
<td>2-y survival rate</td>
<td>8</td>
<td>6</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>

SCHOLAR-1 Long-Term Outcomes and ASCT

Outcomes are poor… how do you move the needle?

Rationale for Immunotherapy in DLBCL (and Other B-Cell NHLs)

• Chemorefractory DLBCL has a very poor outcome
• Immunotherapy of B-cell markers has already improved survival
• Acquired B-cell aplasia is remarkably well tolerated in adults

Molecular Aspects of CAR T-Cell Constructs

CARs are hybrid proteins consisting of an extracellular single chain fragment of variable region (scFv) fused to co-stimulatory signaling domains CD28 or 4-1BB (CD137), coupled with CD3ζ to mediate T-cell activation.

First Generation
- CD4 / CD8 zeta CARs
- scFv CARs

Second Generation
- scFv CD28 CARs
- scFv CD137 CARs

Extracellular

Intracellular

Irving & Weiss, 1991
Letai et al., 1991
Romeo, 1991
Kowalski, 1987
Eshhar, 1993
Roberts, 1997
Finney, 1998
Maher, 2002
Finney, 2002
Imai, 2004
Mifune, 2009
Carpentor, 2009
CTL019a Is Designed to Hunt and Destroy CD19-Positive B-Cell Cancers in Patients

Aspects of Most Studied CD19 CAR T-Cell Constructs—The Models

<table>
<thead>
<tr>
<th>Academic Group</th>
<th>Company (Drug)</th>
<th>Costimulatory Domain</th>
<th>Vector Delivery</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPenn</td>
<td>Novartis (CTL019)</td>
<td>4-1BB</td>
<td>Lentiviral</td>
<td>ALL, CLL, DLBCL, FL</td>
</tr>
<tr>
<td>MSKCC</td>
<td>Juno (JCAR 015)</td>
<td>CD28</td>
<td>Retroviral</td>
<td>ALL, CLL, various B-cell malignancies</td>
</tr>
<tr>
<td>Fred Hutchinson</td>
<td>Juno (JCAR 017)</td>
<td>4-1BB</td>
<td>Lentiviral</td>
<td></td>
</tr>
<tr>
<td>NCI (NIH)</td>
<td>Kite Pharma (KTE-C19)</td>
<td>CD28</td>
<td>Retroviral</td>
<td>DLBCL</td>
</tr>
<tr>
<td>Baylor</td>
<td>Bluebird/Celgene</td>
<td>CD28</td>
<td>Retroviral</td>
<td>ALL, CLL</td>
</tr>
<tr>
<td>MDACC</td>
<td>Ziopharm/Intrexon</td>
<td>CD28 → 4-1BB</td>
<td>Transposon/transposase</td>
<td>Adjuvant, pre-/post-transplant</td>
</tr>
<tr>
<td>Institut Pasteur</td>
<td>Cellcertis/Pfizer (UCART19a)</td>
<td>4-1BB</td>
<td>Lentiviral</td>
<td>ALL, CLL, AML, MM</td>
</tr>
<tr>
<td>Baylor</td>
<td>Bellicum (BPX-401a)</td>
<td>MyD88 + CD40</td>
<td>Retroviral</td>
<td>Various</td>
</tr>
<tr>
<td>Dartmouth</td>
<td>Cardio3</td>
<td>DAP-10 transmembrane</td>
<td>Retroviral</td>
<td>AML, MDS, MM</td>
</tr>
</tbody>
</table>

FDA-approved indication. *Off-label and investigational. www.clinicaltrials.gov*
Axicabtagene Ciloleucel (axi-cel) in R/R DLBCL

Bar Chart
- Axicabtagene Ciloleucel (axi-cel) in R/R DLBCL
- Best Response, %
 - Complete response
 - Partial response
 - Stable disease
 - Disease progression
 - Could not be evaluated

Table
- DLBCL (n = 77)
 - ORR: 49 (38)
 - SD: 12 (9)
 - PD: 5 (4)
 - NE: 1 (1)

- PMBCL or TFL (n = 24)
 - ORR: 71 (17)
 - SD: 8 (2)
 - PD: 4 (1)
 - NE: 4 (1)

- All Patients (N = 101)
 - ORR: 82 (85)
 - SD: 11 (11)
 - PD: 5 (5)
 - NE: 2 (2)

Graph
- 6-mo OS, ZUMA-1 vs SCHOLAR-1: 80% vs 55%
- Median OS (95% CI), mo
 - ZUMA-1: NR (10.5-NR)
 - SCHOLAR-1: 6.3 (6.1-7.5)

FDA approved axi-cel on October 18, 2017
- Median follow-up: 8.7 mo

Reference
Durable Response Rates With FDA-Approved CAR T-Cell Therapy

JULIET study in DLBCL shows strong Duration of Response
74% of responders were relapse-free at 6 months

<table>
<thead>
<tr>
<th>r/r DLBCL responses to therapy</th>
<th>n</th>
<th>ORR</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best overall response</td>
<td>81</td>
<td>53%</td>
<td>40%</td>
</tr>
<tr>
<td>Month 3 response</td>
<td>81</td>
<td>38%</td>
<td>32%</td>
</tr>
<tr>
<td>Month 6 response</td>
<td>46</td>
<td>37%</td>
<td>30%</td>
</tr>
</tbody>
</table>

- 6-month probability of being relapse-free was 74%
- Median DOR and OS not reached
- 6-month probability of overall survival was 64.5%
- No patient who achieved a response (CR or PR) proceeded to allogeneic- or auto-SCT
CAR T Cells—Response at Cost of Toxicity

- Immunotherapy with CAR T cells with activation molecules not without collateral toxicity
- Cytokine release syndrome and neurologic toxicity can be severe/life-threatening
- Requires inpatient monitoring by dedicated expert staff

Patient Case

- 63-year-old with DLBCL
- Treated with:
 - Rituximab-EPOCH/MTX (complete response)
 - Rituximab-ICE (refractory)
 - 4/24/18 axi-cel infusion (post-collection/lymphodepletion)
Summary

- Outcomes in chemorefractory DLBCL have historically been dismal
- Current CAR modified T-cell technology offers new hope for R/R lymphomas and other B-cell malignancies
- Overcoming limitations associated with time to produce therapy, toxicity, and cost will be key to success of future therapies

Contact Information

Call (toll-free) 866 858 7434
Email info@med-iq.com

Please visit us online at www.Med-IQ.com for additional activities provided by Med-IQ®.
© 2018

Unless otherwise indicated, photographed subjects who appear within the content of this activity or on artwork associated with this activity are models; they are not actual patients or doctors.
Hematologic Malignancies: Abbreviations and Acronyms

AE = adverse event
ALL = acute lymphocytic leukemia
AML = acute myeloid leukemia
APC = antigen-presenting cell
APL = acute promyelocytic leukemia
ASCT = autologous stem cell transplantation
BCL2 = B-cell lymphoma 2
BM = bone marrow
CAR = chimeric antigen receptor
CBF = core-binding factor
CCTG = Canadian Cancer Trials Group
CLL = chronic lymphocytic leukemia
CR = complete remission
CRc = composite complete remission
CRI = complete remission with incomplete peripheral blood count recovery
CRp = complete remission with incomplete platelet recovery
CT = computed tomography
DFS = disease-free survival
DLBCL = diffuse large B-cell lymphoma
EPOCH = etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin
Exp = expected
FL = follicular lymphoma
FLAG-IDA = fludarabine, cytarabine, and idarubicin
FLT3 = fms-like tyrosine kinase-3
HSCT = hematopoietic stem cell transplantation
IA = Molecular Epidemiology Resource of the University of Iowa
ICE = ifosfamide, carboplatin, etoposide
ITD = internal tandem duplication
ITT = intention to treat
JM = juxtamembrane
LoDAC = low-dose cytarabine
LYSARC = Lymphoma Academic Research Organization
MC = Mayo Clinic Lymphoma Specialized Program of Research Excellence
MDACC = MD Anderson Cancer Center
MDS = myelodysplastic syndromes
MEC = mitoxantrone, etoposide, and cytarabine
MM = multiple myeloma
MSKCC = Memorial Sloan Kettering Cancer Center
MTD = maximum tolerated dose
MTX = methotrexate
NA = not available
N/A = not applicable
NCI = National Cancer Institute
NCRI = National Cancer Research Institute
ND = newly diagnosed
NDA = New Drug Application
NE = not evaluable
NHL = Non-Hodgkin lymphoma
NIH = National Institutes of Health
NR = not reached
NRM = nonrelapse mortality
Obs = observed
ORR = objective response rate
OS = overall survival
PD = progressive disease
PET = positron emission tomography
PIA = plasma inhibitory activity
PK = pharmacokinetics
PMBCL = primary mediastinal B-cell lymphoma
pMHC = peptide-major histocompatibility complex
PR = partial remission
QTcF = Fridericia-corrected QT interval
RCHOP = rituximab + cyclophosphamide/doxorubicin/vincristine/prednisone
R/R = relapsed or refractory
RTK = receptor tyrosine kinase
scFv = single-chain fragment of variable region
SD = stable disease
SEER = Surveillance, Epidemiology and End Results
TCR = T-cell receptor
TEAE = treatment-emergent adverse event
TFL = transformed follicular lymphoma
TIL = tumor-infiltrating lymphocyte
TKD = tyrosine kinase domain
WBC = white blood cell
wt = wild type